
Beyond Sesame street-based naming schemes:
Camembert vs CharacterBERT, a study on the

performance robustness of large monolingual language
models and their character-based counterparts

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez,  
Yoann Dupont, Laurent Romary, Éric de la Clergerie, Djamé Seddah* and Benoît Sagot.

22/01/2020 00&44

Page 1 sur 1https://upload.wikimedia.org/wikipedia/fr/b/b0/Institut_national_de_recherche_en_informatique_et_en_automatique_2011_logo.svg

22/01/2020 01&12The research at PRAIRIE Institute | Prairie

Page 1 sur 5https://prairie-institute.fr/the-research-at-prairie-institute/

THE
RESEARCH
AT PRAIRIE
INSTITUTE
Research in
PRAIRIE is
organized in a
double helix with
two intertwined
threads: (a) core
AI
methodological
research, and (b)
interdisciplinary
work at the
interface with
sciences and
applications.

The first thread includes

foundational work in core AI

domains such as knowledge

representation, machine learning

and optimization, as well as

THE
RESEARCH
AT
PRAIRIE
INSTITUTE

FUNDAMENTAL
RESEARCH

INTERDISCIPLINARY
RESEARCH

COLLABORATIVE
RESEARCH
WITH
INDUSTRY

Came
mBER

T mu
st d

ie! 

 (jk

, lol
)

Ganesh Jawahar, Arij Riabi, Wissam Antoun

Djamé Seddah: Who am I?

• Tenured Associate Professor at Sorbonne University since 2006 (ex Paris IV)
• On teaching leave at the Inria Paris since 2018, focusing on morphologically-rich
and low-resource languages with an emphasis on extremely-scarce resource
scenarios (noisy user-generated content for dialects, various hate-speech and
radicalization domains, etc.)

•Of course, trying to understand how to best take advantages of large neural
language models in context of high language variability

• Participated in the first large scale replication of Bert (CamemBERT), first largest
GPT model for French (PagnolXL) and first version of a character-based language
model on very noisy UGC of dialectal Arabic (CharacterBert for UGC)

•Many data sets created (SPMRL, Sequoia, French Social Media Bank, French
QuestionBank, Deep Syntax treebanks, etc.)

Djamé Seddah: main projects

• Anr Sequoia (2009-2012, co-PI): Statistical parsing of French. First free and libre
syntactically annotated data set for French, morphological-clustering for parsing..

• Anr SoSweet (2015-2021, co-PI): Twitter Sociolinguistics Variability. Capturing
contextual diachronic change, co-funded CamemBert, Bert-based normalisation, ..

•Anr Parsiti (2016-2022, PI) Tackling noisy user-generated content for Parsing and
Machine Translation. Parallel French social media bank, cross-lingual transfer, etc.

• PHC Maimonide (2018-2020, co-PI with Bar Illan): community detection via
shared semantic drift, word usage change detection,..

•H2020 Counter (2021-2024, co-PI) multilingual multi domain (almost) zero-shot
online radicalisation detection. CharacterBert for UGC, hateful multimodal meme
detection, data augmentation via target domain data generation,…

NLP: How does it work?

•Using linguistics knowledge. One principle, two schools: 
(i) Building grammars, extraction rules and associated software.  
⇒ Old-school approach, costly. Precise but very application-dependant.

(ii) Building annotated data set and build learning models that will
do the same as (1) (but better, certainly faster) 
⇒Data-driven approach, we try to generalize the data. Flexible & domain sensitive

• No (or much fewer) linguistics knowledge.
(i) Building « nothing » and counting on massive amount of data  
to detect regularities, bring out information
⇒Non-supervised approaches (=no prior explicit linguistics knowledge)

(ii) Using (I) via language models and directly transfer knowledge
to tasks => this is the current NLP revolution

The NLP first Revolution: the word embeddings Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

The problem : words as discrete symbols

(borrowed from Goldberg (2015))

The NLP first Revolution: the word embeddings
Path to the solution : distributional hypothesis

(borrowed from Goldberg (2015))

Dr. Baroni saw a hairy little wampinuck sleeping behind a tree

 
The Distributional Hypothesis - Harris 1954

 Word in similar contexts tend to have similar meanings

Firth, 1957
« You should know a word by the company it keeps »

The NLP first Revolution: the word embeddings
Representing words as Vectors

(borrowed from Goldberg (2015))

Co-occurrence

he curtains open and the moon shining in on the barely

ars and the cold , close moon " . And neither of the w

rough the night with the moon shining so brightly , it

made in the light of the moon . It all boils down , wr

surely under a crescent moon , thrilled by ice-white

sun , the seasons of the moon ? Home , alone , Jay pla

m is dazzling snow , the moon has risen full and cold

un and the temple of the moon , driving out of the hug

in the dark and now the moon rises , full and amber a

bird on the shape of the moon over the trees in front

But I could n’t see the moon or the stars , only the

rning , with a sliver of moon hanging among the stars

they love the sun , the moon and the stars . None of

the light of an enormous moon . The plash of flowing w

man ’s first step on the moon ; various exhibits , aer

the inevitable piece of moon rock . Housing The Airsh

oud obscured part of the moon . The Allied guns behind

Collecting contexts from co-occurences Word as vectors (embeddings)
Words as Vectors

I Represent each word as a sparse, high dimensional vector
of the words that co-occur with it.
moon = (the:324, shining:4, cold:1, brightly:2,

stars:12, elephant:0, ...)

I Words are similar if their vectors are similar.

I We measure similarity using geometric measures, for
example cosine distance.

I But more intuitively, words are similar if they share many

similar contexts.

The NLP first Revolution: the word embeddings
Word2Vec (Mikolov et al., 2013) almost enabled magic

(borrowed from Goldberg (2015))

king − man + woman = queen

Mikolov et al. (2013a,b,c)

𝑏 𝑎 𝑎∗ 𝑏∗

Tokyo − Japan + France = Paris

Mikolov et al. (2013a,b,c)

𝑏 𝑎 𝑎∗ 𝑏∗

best − good + strong = strongest

Mikolov et al. (2013a,b,c)

vectors in ℝ𝑛

𝑏 𝑎 𝑎∗ 𝑏∗

The NLP Second Revolution: Contextualization
•Word embeddings are not that magic
• One huge drawback : only one vector per word (static vector)
• What about polysemy? Think of the French word « réserver »  

in its booking a flight sense and its cooking one. What changes?  
Its context of occurence.

•Solution : contextualized word embeddings
• Idea: relying on a neural language model to provide a different vector  

depending on the context (neighbors) of the word
• many models appeared on a very short time span, less than a year  

(Elmo, Flair, GPT, BERT, GPT)…

*Language model : a model that can predict the next word given a sequence of words

BERT: Bidirectional Encoder Representations from
Transformers (Devlin et al., 2018, Naacl’2019)

• Contextual word embeddings model trained with
•Masked word prediction
my dog is hairy => my dog is [MASK] => Predict the word ‘hairy’

•Next sentence prediction
the man went to a store [SEP] he bought a [MASK] milk => IsNext

•Transformer architecture (Vaswani et al., NeurIPS’17)

•Trained on BooksCorpus and Wikipedia (English)

BERT: Bidirectional Encoder Representations from
Transformers (Devlin et al., 2018, Naacl’2019)

•State-of-the-art results:
 
 

GLUE score 80.5% (+7.7)

MultiNLI accuracy 86.7% (+4.6)

SQuAD v1.1 Q&A 93.2% (+1.5)

SQuAD v2.0 83.1% (+5.1)
 
 

So it turned out, BERT could actually “learn” something  
better than previous approaches about the English language. 
 
The question of what can it learn instantly became a 
bubbling subfield, « the BERTology » see (Rogers et al, 2020)

BERTology Everyone wants to understand why it works so
well and what it captures in terms of syntax
•Tenney et al. ICLR'19.
•Goldberg. arXiv’19.
•Hewitt et al. NAACL'19.
•Liu et al. NAACL’19.
•Jawahar et al. ACL’19
•Tenney et al. ACL’19.
•Wang et al. ACL’19.
•Lin et al. BlackboxNLP ACL’19.
•Clark et al. BlackboxNLP ACL’19.
•Coenen et al. arXiv’19.
•Michel et al. arXiv’19.
•…

NAACL’19 deadline (dec’18)

ACL’19 conference (August)

ACL’19 deadline (march)

BlackboxNLP’19 deadline (apr)

All of this, within basically six months !

So what does it capture?

Long story short : SYNTAX
Using clustering as well as probing tasks (Conneau et al , 2019),
we showed that lower layers capture phrasal information while
upper layers captures relations between semantic heads
(Jawasahar et al, 2019)

•Probe using the CoNLL 2000 Chunking dataset (Sang et al., 2000):
[NP He] [VP reckons] [NP the current account deficit] [VP will narrow]
•Compute phrase representation from representation of first and last token
 of the chunk.
•Plot t-SNE (Maaten and Hinton, JMLR’08) and perform clustering.

So what does it capture? (2)
Phrasal Syntax – t-SNE Result

So what does it capture? (3)
Phrasal Syntax – t-SNE Result

So what does it capture? (4)

A bit more on that…

•Conneau et al., ACL’18 - Build diagnostic classifier to predict if a
linguistic property is encoded in the given sentence
representation.

•Features:
Surface – Sentence Length, Word Content
Syntactic – Bigram shift, Tree depth, Top constituent
Semantic – Tense, Subject Number, Object Number, Coordination
Inversion and Semantic Odd Man Out. BERT layer

Simple
classifier

predict
sentence length

If the prediction accuracy
is good, then the model
might be capturing the
sentence length feature

So what does it capture? (5)

Hierarchy of Linguistic Info - Result

13

Surface features on lower layers, more semantic on higher ones

So what does it capture? (6)

Cherry on the cake 
 

Role scheme \ Layer 1 2 3 4 5 6 7 8 9 10 11 12

Left-to-right 0.0005 0.0007 0.0008 0.0034 0.0058 0.0087 0.0201 0.0179 0.0284 0.0428 0.0362 0.0305
Right-to-left 0.0004 0.0007 0.0007 0.0032 0.0060 0.0099 0.0233 0.0203 0.0337 0.0486 0.0411 0.0339
Bag-of-words 0.0006 0.0009 0.0012 0.0039 0.0066 0.0108 0.0251 0.0221 0.0355 0.0507 0.0422 0.0348
Bidirectional 0.0025 0.0030 0.0034 0.0053 0.0079 0.0106 0.0226 0.0201 0.0311 0.0453 0.0391 0.0334
Tree 0.0005 0.0009 0.0011 0.0037 0.0055 0.0081 0.0179 0.0155 0.0249 0.0363 0.0319 0.0278

Tree (random) 0.0005 0.0009 0.0011 0.0038 0.0063 0.0099 0.0237 0.0214 0.0338 0.0486 0.0415 0.0340

Table 4: Mean squared error between TPDN and BERT representation for a given layer and role scheme on SNLI
test instances. Each number corresponds to the average across five random initializations.

27/02/2019 depparse_layer_1.svg

file:///Users/ganeshj/Downloads/todelete/depparse_layer_1.svg 1/1

The keys to the cabinet are on the tableThe			keys										to									the			cabinet			are											on									the				table

Figure 2: Dependency parse tree induced from atten-
tion head #11 in layer #2 using gold root (‘are’) as
starting node for maximum spanning tree algorithm.

Results in Table 3 show that the middle lay-
ers perform well in most cases, which supports
the result in Section 4 where the syntactic features
were shown to be captured well in the middle lay-
ers. Interestingly, as the number of attractors in-
creases, one of the higher BERT layers (#8) is
able to handle the long-distance dependency prob-
lems caused by the longer sequence of words in-
tervening between the subject and the verb, bet-
ter than the lower layer (#7). This highlights the
need for BERT to have deeper layers to perform
competitively on NLP tasks.

6 Compositional Structure

Can we understand the compositional nature of
representation learned by BERT, if any? To in-
vestigate this question, we use Tensor Product
Decomposition Networks (TPDN) (McCoy et al.,
2019), which explicitly compose the input token
(“filler”) representations based on the role scheme
selected beforehand using tensor product sum. For
instance, a role scheme for a word can be based on
the path from the root node to itself in the syn-
tax tree (e.g. ‘LR’ denotes the right child of left
child of root). The authors assume that, for a given
role scheme, if a TPDN can be trained well to ap-
proximate the representation learned by a neural
model, then that role scheme likely specifies the
compositionality implicitly learned by the model.
For each BERT layer, we work with five differ-
ent role schemes. Each word’s role is computed
based on its left-to-right index, its right-to-left in-
dex, an ordered pair containing its left-to-right and

right-to-left indices, its position in a syntactic tree
(formatted version of the Stanford PCFG Parser
(Klein and Manning, 2003) with no unary nodes
and no labels) and an index common to all the
words in the sentence (bag-of-words), which ig-
nores its position. Additionally, we also define a
role scheme based on random binary trees.

Following McCoy et al. (2019), we train our
TPDN model on the premise sentences in the
SNLI corpus (Bowman et al., 2015). We initial-
ize the filler embeddings of the TPDN with the
pre-trained word embeddings from BERT’s input
layer, freeze it, learn a linear projection on top of
it and use a Mean Squared Error (MSE) loss func-
tion. Other trainable parameters include the role
embeddings and a linear projection on top of ten-
sor product sum to match the embedding size of
BERT. Table 4 displays the MSE between repre-
sentation from pretrained BERT and representa-
tion from TPDN trained to approximate BERT. We
discover that BERT implicitly implements a tree-
based scheme, as a TPDN model following that
scheme best approximates BERT’s representation
at most layers. This result is remarkable, as BERT
encodes classical, tree-like structures despite rely-
ing purely on attention mechanisms.

Motivated by this study, we perform a case
study on dependency trees induced from self at-
tention weight following the work done by Ra-
ganato and Tiedemann (2018). Figure 2 displays
the dependencies inferred from an example sen-
tence by obtaining self attention weights for ev-
ery word pairs from attention head #11 in layer
#2, fixing the gold root as the starting node and
invoking the Chu-Liu-Edmonds algorithm (Chu
and Liu, 1967). We observe that determiner-noun
dependencies (“the keys”, “the cabinet” and “the
table”) and subject-verb dependency (“keys” and
“are”) are captured accurately. Surprisingly, the
predicate-argument structure seems to be partly
modeled as shown by the chain of dependencies
between “key”,“cabinet” and “table”.

Dependency parse tree induced from attention head #11 in layer #2 using gold root
(‘are’) as starting node for the maximum spanning tree algorithm.

So everything solved ?
At that moment, all results were done on English 
 a very specific language (configurational language: word functions can be
deduced from word order, poor morphology, etc..)

Then came Multilingual BERT (Delivn et al, 2019, Pires et al, 2019)
again it’s not been a year already !

• Basically BERT trained on the concatenation of 104 languages (including
French)

• Initial results showed an almost magic ability to transfer
information across different languages, even different scripts

• Still, a picture began to emerged : monolingual improvement were
not as high as those experienced on English. 
 
Questions : Is it because of the training data size ? The lack of text
variability? (mostly wikipedia-based)  
 
 

Enters CamemBERT…
Some facts
- Prior to CamemBERT’s release, no large monolingual transformer-based
models comparable to BERT available (German and Chinese training data being
much smaller in size) 
- Since then, many came out (FlauBERT for French, BERTje for Dutch, FinBERT
for Finnish)
Some technical facts about CamemBERT (base)
- 12 layers, 768 hidden dimensions, 12 attention heads, 110M parameters,

32Kwords (sentence piece)
- Trained on the Oscar corpora (138gb of raw texts from Common Crawl)
- Adapted from RoBERTA (Liu et al, 2019) that improves over Devlin et al’s

(2018) implementation (meaning only Mask Language Modeling as
pretraining objective)

CamemBERT impact on downstream tasks: Setup
Two usages, 4 tasks
 - (i) Fine-tuning and as (ii) Feature-based Embeddings
- POS tagging, Dependency Parsing, Named-Entity Recognition and Natural
Language Inference
CamemBERT Embeddings
- Usually shown to perform slightly than lower fine-tuning, depends of the tasks
- Compute the average over of each subword representations in the last four
layers and then average the resulting sub-word vectors.
Fine-Tuning
- No special tricks, fine-tuned for each individual task. Best model selected out of
the 30 first epoch on the validation test.  
- POS-tagging, Dep. parsing and NER are run within the HugginFace Transformer
Library, NLI with Fairseq’s implementation of Roberta

CamemBERT impact on downstream tasks: Setup
Baselines
- mBERT, (Pires et al, 2019) Multilingual BERT trained on 104 languages
- XLM(MLM-TLM) (multilingual pretrained language model with cross-lingual

objectives)
- UDify (Kondratyuk, 2019), multitask and multilingual model that basically

fine-tuned mBERT on the 124 UD treebanks (brutal but genius if you ask me)

- UDpipe Future+mBERT+Flair (Straka et al, 2019), a bi-LSTM-based parser
that uses both mBERT and Flair as features-based contextualized embeddings

Data Set
- POS tagging/parsing: 4 French treebanks (UD-GSD, Sequoia, Spoken and

ParTUT)
- NER : NER annotated version of the FTB (Sagot et al, 2012)
- NLI : XNLI (Conneau et al, 2018) French test and dev: manual, train: MT 

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2020 Submission 2183. Confidential Review Copy. DO NOT DISTRIBUTE.

GSD SEQUOIA SPOKEN PARTUT
MODEL

UPOS LAS UPOS LAS UPOS LAS UPOS LAS

mBERT (fine-tuned) 97.48 89.73 98.41 91.24 96.02 78.63 97.35 91.37
XLMMLM-TLM (fine-tuned) 98.13 90.03 98.51 91.62 96.18 80.89 97.39 89.43
UDify (Kondratyuk, 2019) 97.83 91.45 97.89 90.05 96.23 80.01 96.12 88.06
UDPipe Future (Straka, 2018) 97.63 88.06 98.79 90.73 95.91 77.53 96.93 89.63
+ mBERT + Flair (emb.) (Straka et al., 2019) 97.98 90.31 99.32 93.81 97.23 81.40 97.64 92.47

··
CamemBERT (fine-tuned) 98.18 92.57 99.29 94.20 96.99 81.37 97.65 93.43
UDPipe Future + CamemBERT (embeddings) 97.96 90.57 99.25 93.89 97.09 81.81 97.50 92.32

Table 1: POS and dependency parsing scores on 4 French treebanks, reported on test sets assuming gold tokeniza-
tion and segmentation (best model selected on validation out of 4). Best scores in bold, second best underlined.

Model F1

SEM (CRF) (Dupont, 2017) 85.02
LSTM-CRF (Dupont, 2017) 85.57
mBERT (fine-tuned) 87.35

··
CamemBERT (fine-tuned) 89.08
LSTM+CRF+CamemBERT (embeddings) 89.55

Table 2: NER scores on the FTB (best model selected
on validation out of 4). Best scores in bold, second best
underlined.

Model Acc. #Params

mBERT (Devlin et al., 2019) 76.9 175M
XLMMLM-TLM (Lample and Conneau, 2019) 80.2 250M
XLM-RBASE (Conneau et al., 2019) 80.1 270M

···
CamemBERT (fine-tuned) 82.5 110M

Supplement: LARGE models
XLM-RLARGE (Conneau et al., 2019) 85.2 550M

···
CamemBERTLARGE (fine-tuned) 85.7 335M

Table 3: NLI accuracy on the French XNLI test set
(best model selected on validation out of 10). Best
scores in bold, second best underlined.

multilingual pretrained models such as mBERT
and XLMMLM-TLM on all treebanks.

CamemBERT achieves overall slightly bet-
ter results than the previous state-of-the-art and
task-specific architecture UDPipe Future+mBERT
+Flair, except for POS tagging on Sequoia and POS
tagging on Spoken, where CamemBERT lags by
0.03% and 0.14% UPOS respectively. UDPipe Fu-
ture+mBERT +Flair uses the contextualized string
embeddings Flair (Akbik et al., 2018), which are in
fact pretrained contextualized character-level word
embeddings specifically designed to handle mis-
spelled words as well as subword structures such
as prefixes and suffixes. This design choice might
explain the difference in score for POS tagging
with CamemBERT, especially for the Spoken tree-
bank where words are not capitalized, a factor that
might pose a problem for CamemBERT which was
trained on capitalized data, but that might be prop-

erly handle by Flair on the UDPipe Future+mBERT
+Flair model.

Named-Entity Recognition For NER, we simi-
larly evaluate CamemBERT in the fine-tuning set-
ting and as input embeddings to the task specific
architecture LSTM+CRF. We report these scores
in Table 2.

In both scenarios, CamemBERT achieves higher
F1 scores than the traditional CRF-based architec-
tures, both non-neural and neural, and than fine-
tuned multilingual BERT models.10

Using CamemBERT as embeddings to the tra-
ditional LSTM+CRF architecture gives slightly
higher scores than by fine-tuning the model
(89.08 vs. 89.55). This demonstrates that although
CamemBERT can be used successfully without any
task-specific architecture, it can still produce high
quality contextualized embeddings that might be
useful in scenarios where powerful downstream
architectures exist.

Natural Language Inference On the XNLI
benchmark, we compare CamemBERT to previ-
ous state-of-the-art multilingual models in the fine-
tuning setting. In addition to the standard Camem-
BERT model with a BASE architecture, we train
another model with the LARGE architecture, re-
ferred to as CamemBERTLARGE, for a fair com-
parison with XLM-RLARGE. This model is trained
with the CCNet corpus, described in Sec. 6, for
100k steps.11 We expect that training the model for
longer would yield even better performance.

CamemBERT reaches higher accuracy than its
BASE counterparts reaching +5.6% over mBERT,

10XLMMLM-TLM is a lower-case model. Case is crucial for
NER, therefore we do not report its low performance (84.37%)

11We train our LARGE model with the CCNet corpus for
practical reasons. Given that BASE models reach similar per-
formance when using OSCAR or CCNet as pretraining corpus
(Appendix Table 6), we expect an OSCAR LARGE model to
reach comparable scores.

Parsing and POS tagging

Sota Results on almost all data sets, except Spoken.  
Possible reasons: speech data set with no capitalisation and no punctuations.
CamemBERT embeddings still improve though.

Named-Entity Recognition and Natural Language Inference

Sota results on both tasks. Embeddings more impactful on NER 
Note that we trained a Large version for a fair comparison with XLM-Rlarge

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2020 Submission 2183. Confidential Review Copy. DO NOT DISTRIBUTE.

GSD SEQUOIA SPOKEN PARTUT
MODEL

UPOS LAS UPOS LAS UPOS LAS UPOS LAS

mBERT (fine-tuned) 97.48 89.73 98.41 91.24 96.02 78.63 97.35 91.37
XLMMLM-TLM (fine-tuned) 98.13 90.03 98.51 91.62 96.18 80.89 97.39 89.43
UDify (Kondratyuk, 2019) 97.83 91.45 97.89 90.05 96.23 80.01 96.12 88.06
UDPipe Future (Straka, 2018) 97.63 88.06 98.79 90.73 95.91 77.53 96.93 89.63
+ mBERT + Flair (emb.) (Straka et al., 2019) 97.98 90.31 99.32 93.81 97.23 81.40 97.64 92.47

··
CamemBERT (fine-tuned) 98.18 92.57 99.29 94.20 96.99 81.37 97.65 93.43
UDPipe Future + CamemBERT (embeddings) 97.96 90.57 99.25 93.89 97.09 81.81 97.50 92.32

Table 1: POS and dependency parsing scores on 4 French treebanks, reported on test sets assuming gold tokeniza-
tion and segmentation (best model selected on validation out of 4). Best scores in bold, second best underlined.

Model F1

SEM (CRF) (Dupont, 2017) 85.02
LSTM-CRF (Dupont, 2017) 85.57
mBERT (fine-tuned) 87.35

··
CamemBERT (fine-tuned) 89.08
LSTM+CRF+CamemBERT (embeddings) 89.55

Table 2: NER scores on the FTB (best model selected
on validation out of 4). Best scores in bold, second best
underlined.

Model Acc. #Params

mBERT (Devlin et al., 2019) 76.9 175M
XLMMLM-TLM (Lample and Conneau, 2019) 80.2 250M
XLM-RBASE (Conneau et al., 2019) 80.1 270M

···
CamemBERT (fine-tuned) 82.5 110M

Supplement: LARGE models
XLM-RLARGE (Conneau et al., 2019) 85.2 550M

···
CamemBERTLARGE (fine-tuned) 85.7 335M

Table 3: NLI accuracy on the French XNLI test set
(best model selected on validation out of 10). Best
scores in bold, second best underlined.

multilingual pretrained models such as mBERT
and XLMMLM-TLM on all treebanks.

CamemBERT achieves overall slightly bet-
ter results than the previous state-of-the-art and
task-specific architecture UDPipe Future+mBERT
+Flair, except for POS tagging on Sequoia and POS
tagging on Spoken, where CamemBERT lags by
0.03% and 0.14% UPOS respectively. UDPipe Fu-
ture+mBERT +Flair uses the contextualized string
embeddings Flair (Akbik et al., 2018), which are in
fact pretrained contextualized character-level word
embeddings specifically designed to handle mis-
spelled words as well as subword structures such
as prefixes and suffixes. This design choice might
explain the difference in score for POS tagging
with CamemBERT, especially for the Spoken tree-
bank where words are not capitalized, a factor that
might pose a problem for CamemBERT which was
trained on capitalized data, but that might be prop-

erly handle by Flair on the UDPipe Future+mBERT
+Flair model.

Named-Entity Recognition For NER, we simi-
larly evaluate CamemBERT in the fine-tuning set-
ting and as input embeddings to the task specific
architecture LSTM+CRF. We report these scores
in Table 2.

In both scenarios, CamemBERT achieves higher
F1 scores than the traditional CRF-based architec-
tures, both non-neural and neural, and than fine-
tuned multilingual BERT models.10

Using CamemBERT as embeddings to the tra-
ditional LSTM+CRF architecture gives slightly
higher scores than by fine-tuning the model
(89.08 vs. 89.55). This demonstrates that although
CamemBERT can be used successfully without any
task-specific architecture, it can still produce high
quality contextualized embeddings that might be
useful in scenarios where powerful downstream
architectures exist.

Natural Language Inference On the XNLI
benchmark, we compare CamemBERT to previ-
ous state-of-the-art multilingual models in the fine-
tuning setting. In addition to the standard Camem-
BERT model with a BASE architecture, we train
another model with the LARGE architecture, re-
ferred to as CamemBERTLARGE, for a fair com-
parison with XLM-RLARGE. This model is trained
with the CCNet corpus, described in Sec. 6, for
100k steps.11 We expect that training the model for
longer would yield even better performance.

CamemBERT reaches higher accuracy than its
BASE counterparts reaching +5.6% over mBERT,

10XLMMLM-TLM is a lower-case model. Case is crucial for
NER, therefore we do not report its low performance (84.37%)

11We train our LARGE model with the CCNet corpus for
practical reasons. Given that BASE models reach similar per-
formance when using OSCAR or CCNet as pretraining corpus
(Appendix Table 6), we expect an OSCAR LARGE model to
reach comparable scores.

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2020 Submission 2183. Confidential Review Copy. DO NOT DISTRIBUTE.

GSD SEQUOIA SPOKEN PARTUT
MODEL

UPOS LAS UPOS LAS UPOS LAS UPOS LAS

mBERT (fine-tuned) 97.48 89.73 98.41 91.24 96.02 78.63 97.35 91.37
XLMMLM-TLM (fine-tuned) 98.13 90.03 98.51 91.62 96.18 80.89 97.39 89.43
UDify (Kondratyuk, 2019) 97.83 91.45 97.89 90.05 96.23 80.01 96.12 88.06
UDPipe Future (Straka, 2018) 97.63 88.06 98.79 90.73 95.91 77.53 96.93 89.63
+ mBERT + Flair (emb.) (Straka et al., 2019) 97.98 90.31 99.32 93.81 97.23 81.40 97.64 92.47

··
CamemBERT (fine-tuned) 98.18 92.57 99.29 94.20 96.99 81.37 97.65 93.43
UDPipe Future + CamemBERT (embeddings) 97.96 90.57 99.25 93.89 97.09 81.81 97.50 92.32

Table 1: POS and dependency parsing scores on 4 French treebanks, reported on test sets assuming gold tokeniza-
tion and segmentation (best model selected on validation out of 4). Best scores in bold, second best underlined.

Model F1

SEM (CRF) (Dupont, 2017) 85.02
LSTM-CRF (Dupont, 2017) 85.57
mBERT (fine-tuned) 87.35

··
CamemBERT (fine-tuned) 89.08
LSTM+CRF+CamemBERT (embeddings) 89.55

Table 2: NER scores on the FTB (best model selected
on validation out of 4). Best scores in bold, second best
underlined.

Model Acc. #Params

mBERT (Devlin et al., 2019) 76.9 175M
XLMMLM-TLM (Lample and Conneau, 2019) 80.2 250M
XLM-RBASE (Conneau et al., 2019) 80.1 270M

···
CamemBERT (fine-tuned) 82.5 110M

Supplement: LARGE models
XLM-RLARGE (Conneau et al., 2019) 85.2 550M

···
CamemBERTLARGE (fine-tuned) 85.7 335M

Table 3: NLI accuracy on the French XNLI test set
(best model selected on validation out of 10). Best
scores in bold, second best underlined.

multilingual pretrained models such as mBERT
and XLMMLM-TLM on all treebanks.

CamemBERT achieves overall slightly bet-
ter results than the previous state-of-the-art and
task-specific architecture UDPipe Future+mBERT
+Flair, except for POS tagging on Sequoia and POS
tagging on Spoken, where CamemBERT lags by
0.03% and 0.14% UPOS respectively. UDPipe Fu-
ture+mBERT +Flair uses the contextualized string
embeddings Flair (Akbik et al., 2018), which are in
fact pretrained contextualized character-level word
embeddings specifically designed to handle mis-
spelled words as well as subword structures such
as prefixes and suffixes. This design choice might
explain the difference in score for POS tagging
with CamemBERT, especially for the Spoken tree-
bank where words are not capitalized, a factor that
might pose a problem for CamemBERT which was
trained on capitalized data, but that might be prop-

erly handle by Flair on the UDPipe Future+mBERT
+Flair model.

Named-Entity Recognition For NER, we simi-
larly evaluate CamemBERT in the fine-tuning set-
ting and as input embeddings to the task specific
architecture LSTM+CRF. We report these scores
in Table 2.

In both scenarios, CamemBERT achieves higher
F1 scores than the traditional CRF-based architec-
tures, both non-neural and neural, and than fine-
tuned multilingual BERT models.10

Using CamemBERT as embeddings to the tra-
ditional LSTM+CRF architecture gives slightly
higher scores than by fine-tuning the model
(89.08 vs. 89.55). This demonstrates that although
CamemBERT can be used successfully without any
task-specific architecture, it can still produce high
quality contextualized embeddings that might be
useful in scenarios where powerful downstream
architectures exist.

Natural Language Inference On the XNLI
benchmark, we compare CamemBERT to previ-
ous state-of-the-art multilingual models in the fine-
tuning setting. In addition to the standard Camem-
BERT model with a BASE architecture, we train
another model with the LARGE architecture, re-
ferred to as CamemBERTLARGE, for a fair com-
parison with XLM-RLARGE. This model is trained
with the CCNet corpus, described in Sec. 6, for
100k steps.11 We expect that training the model for
longer would yield even better performance.

CamemBERT reaches higher accuracy than its
BASE counterparts reaching +5.6% over mBERT,

10XLMMLM-TLM is a lower-case model. Case is crucial for
NER, therefore we do not report its low performance (84.37%)

11We train our LARGE model with the CCNet corpus for
practical reasons. Given that BASE models reach similar per-
formance when using OSCAR or CCNet as pretraining corpus
(Appendix Table 6), we expect an OSCAR LARGE model to
reach comparable scores.

Striking questions: Impact of training data origin and size
Oscar vs CCNet: CCNet is a Common crawl filtered by a language model
trained on wikipedia while Oscar just filtered CC based on a langage id classifier.
4GB vs 138GB : Varying the size and the origin of data, shows actually how little
impact the pretraining set size actually has on model performances while uniformity
(wikipedia) is detrimental in all cases.

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

ACL 2020 Submission 2183. Confidential Review Copy. DO NOT DISTRIBUTE.

GSD SEQUOIA SPOKEN PARTUT AVERAGE NER NLI
DATASET SIZE

UPOS LAS UPOS LAS UPOS LAS UPOS LAS UPOS LAS F1 ACC.

Fine-tuning
Wiki 4GB 98.28 93.04 98.74 92.71 96.61 79.61 96.20 89.67 97.45 88.75 89.86 78.32
CCNet 4GB 98.34 93.43 98.95 93.67 96.92 82.09 96.50 90.98 97.67 90.04 90.46 82.06
OSCAR 4GB 98.35 93.55 98.97 93.70 96.94 81.97 96.58 90.28 97.71 89.87 90.65 81.88

···
OSCAR 138GB 98.39 93.80 98.99 94.00 97.17 81.18 96.63 90.56 97.79 89.88 91.55 81.55

Embeddings (with UDPipe Future (tagging, parsing) or LSTM+CRF (NER))
Wiki 4GB 98.09 92.31 98.74 93.55 96.24 78.91 95.78 89.79 97.21 88.64 91.23 -
CCNet 4GB 98.22 92.93 99.12 94.65 97.17 82.61 96.74 89.95 97.81 90.04 92.30 -
OSCAR 4GB 98.21 92.77 99.12 94.92 97.20 82.47 96.74 90.05 97.82 90.05 91.90 -

···
OSCAR 138GB 98.18 92.77 99.14 94.24 97.26 82.44 96.52 89.89 97.77 89.84 91.83 -

Table 4: Results on the four tasks using language models pre-trained on data sets of varying homogeneity and size,
reported on validation sets (average of 4 runs for POS tagging, parsing and NER, average of 10 runs for NLI).

The downstream task performances of the mod-
els trained on the 4GB version of CCNet and OS-
CAR are much more similar.15

6.2 How much data do you need?
An unexpected outcome of our experiments is that
the standard CamemBERT, trained on the whole
138GB of text of OSCAR, does not massively out-
perform the model trained “only” on the 4GB sam-
ple of OSCAR. In settings where the language
model is used as embeddings, the “4GB” model
actually performs better than the standard “138GB”
CamemBERT more often than the other way round,
although differences in scores are rarely striking.
For fine-tuning settings, the standard CamemBERT
usually performs better than the 4GB-based one,
but here again, differences are always small.

In other words, when trained on corpora such as
OSCAR and CCNet, which are heterogeneous in
terms of genre and style, 4GB of uncompressed text
is large enough as pretraining corpus to reach state-
of-the-art results with the BASE architecure, better
than those obtained with mBERT (pretrained on
60GB of text). This calls into question the need to
use a very large corpus such as OSCAR or CCNet
when training a monolingual Transformer-based
language model such as BERT or RoBERTa. Not
only does this mean that the computational (and
therefore environmental) cost of training a state-
of-the-art language model can be reduced, but it
also means that CamemBERT-like models can be
trained for all languages for which a Common-
Crawl-based corpus of 4GB or more can be created.
OSCAR is available in 166 languages, and pro-
vides such a corpus for 38 languages. Moreover, it

15We provide the results of a model trained on the whole
CCNet corpus in the Appendix. The conclusions are similar
when comparing models trained on the full corpora: down-
stream results are similar when using OSCAR or CCNet.

is possible that slightly smaller corpora (e.g. down
to 1GB) could also prove sufficient to train high-
performing language models. We obtained our re-
sults with BASE architectures. Further research is
needed to confirm the validity of our findings on
larger architectures and other more complex natu-
ral language understanding tasks. However, even
with a BASE architecture and 4GB of training data,
the validation loss is still decreasing beyond 100k
steps (and 400 epochs). This suggests that we are
still under-fitting the 4GB pretraining dataset, train-
ing longer might lead to better downstream perfor-
mance.

7 Conclusion

We investigate the feasibility of training a
Transformer-based language model for languages
other than English. We use French as an exam-
ple and we train CamemBERT, a language model
based on RoBERTa. We evaluate CamemBERT on
four downstream tasks: part-of-speech tagging, de-
pendency parsing, named entity recognition and
natural language inference.

Our experiments show that using more diverse
web crawled data is preferable to using Wikipedia
data. We also show that models can reach sur-
prisingly high performance with as low as 4GB
of pretraining data, thus questioning the need for
large scale pretraining corpora. This shows that
Transformer-based language models can be trained
on languages other than English, whenever at least
4GB of data is available.

Our best model reaches or improves the state of
the art in all tasks considered, even when compared
to strong multilingual models such as mBERT,
XLM and XLM-R, while also having fewer pa-
rameters. CamemBERT is distributed freely with
an open-source license in popular NLP libraries.

Striking questions: Impact of Design Choices

Masking strategy, architecture, model size
Performance are comparable between CCNet and Oscar-based Camembert.
Positive Impact of large models of course.

16

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

ACL 2020 Submission 2183. Confidential Review Copy. DO NOT DISTRIBUTE.

GSD SEQUOIA SPOKEN PARTUT NER NLI
DATASET MASKING ARCH. #STEPS

UPOS LAS UPOS LAS UPOS LAS UPOS LAS F1 ACC.

Fine-tuning

OSCAR Subword BASE 100k 98.25 92.29 99.25 93.70 96.95 79.96 97.73 92.68 89.23 81.18
OSCAR Whole-word BASE 100k 98.21 92.30 99.21 94.33 96.97 80.16 97.78 92.65 89.11 81.92
CCNET Subword BASE 100k 98.02 92.06 99.26 94.13 96.94 80.39 97.55 92.66 89.05 81.77
CCNET Whole-word BASE 100k 98.03 92.43 99.18 94.26 96.98 80.89 97.46 92.33 89.27 81.92
CCNET Whole-word BASE 500k 98.21 92.43 99.24 94.60 96.69 80.97 97.65 92.48 89.08 83.43
CCNET Whole-word LARGE 100k 98.01 91.09 99.23 93.65 97.01 80.89 97.41 92.59 89.39 85.29

Embeddings (with UDPipe Future (tagging, parsing) or LSTM+CRF (NER))
OSCAR Subword BASE 100k 98.01 90.64 99.27 94.26 97.15 82.56 97.70 92.70 90.25 -
OSCAR Whole-word BASE 100k 97.97 90.44 99.23 93.93 97.08 81.74 97.50 92.28 89.48 -
CCNET Subword BASE 100k 97.87 90.78 99.20 94.33 97.17 82.39 97.54 92.51 89.38 -
CCNET Whole-word BASE 100k 97.96 90.76 99.23 94.34 97.04 82.09 97.39 92.82 89.85 -
CCNET Whole-word BASE 500k 97.84 90.25 99.14 93.96 97.01 82.17 97.27 92.28 89.07 -
CCNET Whole-word LARGE 100k 98.01 90.70 99.23 94.01 97.04 82.18 97.31 92.28 88.76 -

Table 5: Performance reported on Test sets for all trained models (average over multiple fine-tuning seeds).

DATASET MASKING ARCH. #PARAM. #STEPS UPOS LAS NER XNLI

Masking Strategy
CCNet Subword BASE 110M 100K 97.78 89.80 91.55 81.04
CCNet Whole-word BASE 110M 100K 97.79 89.88 91.44 81.55

Model Size
CCNet Whole-word BASE 110M 100K 97.67 89.46 90.13 82.22
CCNet Whole-word LARGE 335M 100k 97.74 89.82 92.47 85.73

Dataset
CCNet Whole-word BASE 110M 100K 97.67 89.46 90.13 82.22
OSCAR Whole-word BASE 110M 100K 97.79 89.88 91.44 81.55

Number of Steps
CCNet Whole-word BASE 110M 100k 98.04 89.85 90.13 82.20
CCNet Whole-word BASE 110M 500k 97.95 90.12 91.30 83.04

Table 6: Comparing scores on the Validation sets of different design choices. POS tagging and parsing datasets
are averaged. (average over multiple fine-tuning seeds).

Treebank #Tokens #Sentences Genres

Blogs, NewsGSD 389,363 16,342
Reviews, Wiki

···
Medical, NewsSequoia 68,615 3,099 Non-fiction, Wiki

···
Spoken 34,972 2,786 Spoken

···
ParTUT 27,658 1,020 Legal, News, Wikis

···
FTB 350,930 27,658 News

Table 7: Statistics on the treebanks used in POS tag-
ging, dependency parsing, and NER (FTB).

Corpus Size #tokens #docs Tokens/doc
Percentiles:

5% 50% 95%

Wikipedia 4GB 990M 1.4M 102 363 2530
CCNet 135GB 31.9B 33.1M 128 414 2869
OSCAR 138GB 32.7B 59.4M 28 201 1946

Table 8: Statistics on the pretraining datasets used.

Striking questions: Impact of Design Choices
Number of steps:
Varying the number of steps shows an early plateau for low level tasks (dep parsing
and NER) while there’s still an improvement for NLI and no performance ceiling in
sight.

This suggests that low-level syntactic
representation are captured early in
the LM training process while it needs
more steps to extract complex
semantic information as needed for
NLI.

15

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

ACL 2020 Submission 2183. Confidential Review Copy. DO NOT DISTRIBUTE.

Appendix

In the appendix, we add additional statistics on
the datasets we used (Tables 7 and 8) and analyse
different design choices of CamemBERT (Table 6),
namely with respect to the number of steps, the use
of whole-word masking, the training dataset, and
the model size. In all the ablations, all scores comes
from at least 4 averaged runs. For POS tagging and
dependency parsing, we average the scores on the
4 treebanks. We also report all averaged test scores
of our different models in Table 5.

A Additional statistics

Table 7 reports some statistics about the treebanks
used for POS tagging, dependency parsing and
NER. Table 8 describes the 3 pretraining datasets
used for training our models.

B Impact of Whole-Word Masking

In Table 6, we compare models trained using
the traditional subword masking with whole-word
masking. Whole-Word Masking positively impacts
downstream performances for NLI (although only
by 0.5 points of accuracy). To our surprise, this
Whole-Word Masking scheme does not benefit
much lower level task such as Name Entity Recog-
nition, POS tagging and Dependency Parsing.

C Impact of model size

Table 6 compares models trained with the BASE
and LARGE architectures. These models were
trained with the CCNet corpus (135GB) for prac-
tical reasons. We confirm the positive influence
of larger models on the NLI and NER tasks. The
LARGE architecture leads to respectively 19.7%
error reduction and 23.7%. To our surprise, on POS
tagging and dependency parsing, having three time
more parameters doesn’t lead to a significant differ-
ence compared to the BASE model. Tenney et al.
(2019) and Jawahar et al. (2019) have shown that
low-level syntactic capabilities are learnt in lower
layers of BERT while higher level semantic repre-
sentations are found in upper layers of BERT. POS
tagging and dependency parsing probably do not
benefit from adding more layers as the lower layers
of the BASE architecture already capture what is
necessary to complete these tasks.

Figure 1: Impact of number of pretraining steps on
downstream performance for CamemBERT.

.

D Impact of training dataset

Table 6 compares models trained on CCNet and
on OSCAR. The major difference between the two
datasets is the additional filtering step of CCNet
that favors Wikipedia-Like texts. The model pre-
trained on OSCAR gets slightly better results on
POS tagging and dependency parsing, but gets a
larger +1.31 improvement on NER. The CCNet
model gets better performance on NLI (+0.67).

E Impact of number of steps

Figure 1 displays the evolution of downstream task
performance with respect to the number of steps.
We evaluate our model at every epoch (1 epoch
equals 8360 steps). We report the masked language
modelling perplexity along with downstream per-
formances. Figure 1, suggests that the more com-
plex the task the more impactful is the number of
steps. We observe an early plateau for dependency
parsing and NER at around 22k steps, while for
NLI, even if the marginal improvement with regard
to pretraining steps becomes smaller, the perfor-
mance does not seem to plateau at 100k steps.

In Table 6, we compare two models trained on
CCNet, one for 100k steps and the other for 500k
steps to evaluate the influence of the total number
of steps. The model trained for 500k steps does
not increase the scores much from just training
for 100k steps in POS tagging and parsing. The
increase is slightly higher for XNLI (+0.84).

Those results suggest that low level syntactic
representation are captured early in the language
model training process while it needs more steps
to extract complex semantic information as needed
for NLI.

Striking questions: How about Low Ressource and High
Variability Languages Scenarios ?

Linguistics Facts about Narabizi
• Arabic dialect spoken in North-Africa

and among the diaspora.
• Mostly User-Generated Content
• Semitic language, rich inflexion system
• High degree of variability among  

speakers (spelling, transliteration,
phonology)

• High degree of code switching with
French (36%)

Case Study: North-African Dialectal Arabic written in Latin Script

Data Set: the Narabizi Treebank
(Seddah et al., 2020)
• 1500 sent. with morphology, dep. trees,

French translation, etc.
• 99k web-crawled unlabeled sentences 

(46k of higher quality available)

ABSOLUTELY NOT ENOUGH DATA TO TRAIN A BERT MODEL !

Character-based language models to the rescue?
Character-BERT Model (El Boukkouri et al., 2020)

BERT is great but has some
shortcomings:
• its vocabulary is fixed
• use of word-pieces to handle OOVs
• More generally domain-bias perceptible in the

sub-words vocabulary
• Needs a lot of data (4gb is a lot in Narabizi)

Looking at the frequency of splitting an unknown token into multiple wordpieces (cf. Figure 1) we see
that the medical vocabulary produces overall less wordpieces than the general version, both at occurrence
and type levels. Moreover, we see that ⇡ 13% of occurrences are never split as they are already part of
the medical vocabulary but are decomposed into two or more wordpieces by the general vocabulary.

Reference Medical Vocabulary General Vocabulary

paracetamol [paracetamol [para, ce, tam, ol]
choledocholithiasis [choledoch, olithiasis] [cho, led, och, oli, thi, asi, s]
borborygmi [bor, bor, yg, mi] [bo, rb, ory, gm, i]

Table 1: Comparison of the tokenization of specific medical terms by vocabularies from different domains.

When looking closer at the quality of the produced wordpieces (cf. Table 1), we see that in addition
to producing fewer subwords, the specialized vocabulary also seems to produce more meaningful units
(e.g. “choledoch” and “olithiasis”). These preliminary analyses show that the choice of a vocabulary
affects the quality of the tokenization which may in turn induce biases in downstream applications of
the representation model. To avoid such biases, and in an effort to revert back to more convenient and
conceptually simpler word-level models, we propose CharacterBERT, a wordpiece-free variant of BERT.

3 CharacterBERT

CharacterBERT is similar in every way to vanilla BERT but uses a different method to construct initial
context-independent representations: while the original model consults its vocabulary to split unknown
tokens into multiple wordpieces then embeds each unit independently using a wordpiece embedding
matrix, CharacterBERT uses a Character-CNN module (Peters et al., 2018; Jozefowicz et al., 2016) which
consults the characters of a token to produce a single representation (see Figure 2).

Figure 2: Comparison of the context-independent representation systems in BERT and CharacterBERT.
In this illustration, BERT splits the word “Apple” into two wordpieces then embeds each unit separately.
CharacterBERT produces a single embedding for “Apple” by consulting its sequence of characters.

Comparison of the tokenization of specific medical terms by vocabularies from different
domains. (El Boukkouri et al, 2020)

Looking at the frequency of splitting an unknown token into multiple wordpieces (cf. Figure 1) we see
that the medical vocabulary produces overall less wordpieces than the general version, both at occurrence
and type levels. Moreover, we see that ⇡ 13% of occurrences are never split as they are already part of
the medical vocabulary but are decomposed into two or more wordpieces by the general vocabulary.

Reference Medical Vocabulary General Vocabulary

paracetamol [paracetamol [para, ce, tam, ol]
choledocholithiasis [choledoch, olithiasis] [cho, led, och, oli, thi, asi, s]
borborygmi [bor, bor, yg, mi] [bo, rb, ory, gm, i]

Table 1: Comparison of the tokenization of specific medical terms by vocabularies from different domains.

When looking closer at the quality of the produced wordpieces (cf. Table 1), we see that in addition
to producing fewer subwords, the specialized vocabulary also seems to produce more meaningful units
(e.g. “choledoch” and “olithiasis”). These preliminary analyses show that the choice of a vocabulary
affects the quality of the tokenization which may in turn induce biases in downstream applications of
the representation model. To avoid such biases, and in an effort to revert back to more convenient and
conceptually simpler word-level models, we propose CharacterBERT, a wordpiece-free variant of BERT.

3 CharacterBERT

CharacterBERT is similar in every way to vanilla BERT but uses a different method to construct initial
context-independent representations: while the original model consults its vocabulary to split unknown
tokens into multiple wordpieces then embeds each unit independently using a wordpiece embedding
matrix, CharacterBERT uses a Character-CNN module (Peters et al., 2018; Jozefowicz et al., 2016) which
consults the characters of a token to produce a single representation (see Figure 2).

Figure 2: Comparison of the context-independent representation systems in BERT and CharacterBERT.
In this illustration, BERT splits the word “Apple” into two wordpieces then embeds each unit separately.
CharacterBERT produces a single embedding for “Apple” by consulting its sequence of characters.

Idea: Pushing Elmo’s word
representation model (Char-CNN)
to BERT

OOV representation in BERT
and Character-BERT

(El Boukkouri et al, 2020)

Character-based language models to the rescue? (2)
Character-BERT Model: an ideal model for noisy dialectal UGC?

• Robustsness to noise
• Needs less data to train

Experiments along 2 axis

• Pretraining data :
• Narabizi (99k),
• Oscar (99k, 0.01%)
• Oscar+Narabizi (33k+66k) 

• Architecture (last layer ft)
• Model+Task:  

Pretraining + Fine-Tuning on Task
• Model+MLM+Task: 

Pretraining+Fine-Tuning on MLM
(Narabizi)+Fine-Tuning on Task

• Better performance than BERT in 3 out of 4
biomedical tasks (sequence labeling, NLI,
Similarity detection)

Tasks: POS Tagging, Dependency parsing 
Parser: Neat version of the Biaffine parser by Grobold & Crabbé (2021)

Models: CamemBERT (Full) & mBERT 
** no pretraining from scratch **

Character-based language models to the rescue? (3)
Character-BERT Model performance: okay-ish (0.01% of Oscar size)

66

67

68

69

70

71

72

73

74

75

CharacterBert(dz
99k)

CharacterBert(oscar
99k)

CharacterBert(oscar
33k+Dz 66k))

mBert mBERT+MLM camembert Camembert+MLM

MODEL+TASK (UAS) - Model+MLM+Task  
overperform

- Model+Task:  
CamemBERT >  
CharBERT > mBERT

- Very small test set
- Many variations  

between configurations 
and tasks

‣ Need to know the full
story with more 
 test data and
comparable training

Character-based language models to the rescue? (4)
Tackling Extreme UGC with the French Social Media Bank

• Very noisy UGC data set:  
Twitter, Facebook+forums  
(Seddah et al, 2012)

• Much larger test sets, splits: 2k/1k/1k
• Many in-domain treebanks (Sequoia: 2k training)
• Model+Task only. 2 scenarios: In-domain and 

Out-domain  

Model-LayerConfig GSD SEQUOIA SPOKEN
UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS

No pre-training 96.35 89.98 86.96 92.57 82.28 77.72 83.60 67.65 58.04
CamemBERT (100% Oscar) 98.53 95.74 94.17 99.23 95.78 94.59 97.41 88.15 83.00

CharacterBERT (1% Oscar) 98.07 95.22 93.50 99.27 94.98 93.80 96.62 86.82 81.22

Table 6: POS and dependency parsing scores on 3 French treebanks.

Model-LayerConfig Dev Test
UPOS UAS LAS UPOS UAS LAS

FS
M

B
tr

ai
n

No pre-training 81.24 70.04 59.46 81.62 69.19 59.17
CamemBERT 95.34 87.01 81.56 95.48 87.47 82.66

CharacterBERT 95.08 85.99 80.51 95.19 86.26 81.26

Se
qu

oi
a

tr
ai

n

No pre-training 71.50 59.04 47.30 72.79 59.92 48.81
CamemBERT 89.47 81.80 74.33 90.10 82.68 75.85

CharacterBERT 90.12 81.79 74.43 90.68 82.39 75.39

Table 7: POS and dependency parsing scores on the FSMB.

settings. In the first one, both models are fine-tuned
on the FSMB training set. In the second one, the
models are trained on the Sequoia training set. The
performance of these models is to be compared – as
in table 7 – to the performance of a parser without
external embeddings from a pre-trained model. As
expected, both models outperform the baseline and
– similarly to previous results – are competitive in
their respective obtained scores.

In the FSMB training setting, CamemBERT
achieves scores of (95.34/87.01/81.56) when
tested on the development part of the data set,
and CharacterBERT achieves close scores of
(95.08/85.99/80.51) on the same data set. Both
scores outperform the ones obtained by the baseline
of (81.24/70.04/59.46) also on the development set.
The same behavior can be observed in the Sequoia
training setting where CamemBERT gets scores of
(89.47/81.80/74.33) and CharacterBERT scores of
(90.12/81.79/74.43) on the development set: both
are still higher than the baseline scores. This com-
parison is still valid when we consider the test set
results. For reasons probably tied to the random
sampling done when splitting the data set, the score
ranking are reversed in the test set, yet results are
very similar and the slight differences between the
two models results are not statistically significant.
This shows the actual effectiveness of having a
character-based model trained on only a small frac-
tion of its “classic” BERT counterpart when facing
noisy user-generated content from a data set that
was proven to be much more noisy that many other
similar data sets (Rosales Núñez et al., 2019).

UPOS UAS LAS %Oscar
FSMB fine-tuned (in-domain)

CamemBERT 95.48 87.47 82.66 100
CamemBERT4gb 95.13 85.73 80.72 2.38
Character-BERT 95.19 86.26 81.26 1

Sequoia fine-tuned (out domain)
CamemBERT 90.10 82.68 75.85 100

CamemBERT4gb 90.69 82.29 75.83 2.38
Character-BERT 90.68 82.39 75.39 1

Table 8: CharacterBert model performance compared
with a small CamemBERT (4gb) model on the FSMB
test set in in-domain and out-of-domain fine-tuning sce-
narios. Full-size Camembert results are reported here
for reference.

8 Discussion

In this work, we evaluate the benefits of using a
character-based model in low-resource scenarios.
Our results show that training such a model from
scratch on much fewer data gives similar perfor-
mance to a multilingual BERT adapted to the lan-
guage using the same amount of data.

Overall, our observations confirm the findings
of El Boukkouri et al. (2020) regarding the robust-
ness to noise and misspellings of the Character-
BERT model. We showed that the model has com-
petitive performance on noisy French UGC data
when trained on only a fraction of the OSCAR
corpus compared to CamemBERT trained on the
full corpus and when trained on corpora containing
about 1M words in the extremely noisy and low-
resource case of NArabizi. This is consistent with
the findings of Martin et al. (2020) and Micheli
et al. (2020), who showed that MLM could already
learn a lot from pre-training on smaller data set.
Extending this investigation by training on a larger

- CharacterBert: very
strong performance in
both scenarios but
surprisingly so does
CamemBERT4G !

- How does it work with
even less pretraining data
? 

CharacterBERT vs CamemBERT4GB

Character-based language models to the rescue? (5)
Tackling Extreme UGC with the French Social Media Bank

• Very noisy UGC data set:  
Twitter, Facebook+forums  
(Seddah et al, 2012)

• Much larger test sets, splits: 2k/1k/1k
• Many in-domain treebanks (Sequoia: 2k training)
• Model+Task only. 2 scenarios: In-domain and 

Out-domain  
CharacterBERT vs CamemBERT4GB

- Lesser performance overall but
not so bad. Much better than w/o
any pretraining.

Character-based language models to the rescue? (6)
Tackling Extreme UGC with the French Social Media Bank

• Very noisy UGC data set:  
Twitter, Facebook+forums  
(Seddah et al, 2012)

• Much larger test sets, splits: 2k/1k/1k
• Many in-domain treebanks (Sequoia: 2k training)
• Model+Task only. 2 scenarios: In-domain and 

Out-domain  

Model-LayerConfig GSD SEQUOIA SPOKEN
UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS

No pre-training 96.35 89.98 86.96 92.57 82.28 77.72 83.60 67.65 58.04
CamemBERT (100% Oscar) 98.53 95.74 94.17 99.23 95.78 94.59 97.41 88.15 83.00

CharacterBERT (1% Oscar) 98.07 95.22 93.50 99.27 94.98 93.80 96.62 86.82 81.22

Table 6: POS and dependency parsing scores on 3 French treebanks.

Model-LayerConfig Dev Test
UPOS UAS LAS UPOS UAS LAS

FS
M

B
tr

ai
n

No pre-training 81.24 70.04 59.46 81.62 69.19 59.17
CamemBERT 95.34 87.01 81.56 95.48 87.47 82.66

CharacterBERT 95.08 85.99 80.51 95.19 86.26 81.26

Se
qu

oi
a

tr
ai

n

No pre-training 71.50 59.04 47.30 72.79 59.92 48.81
CamemBERT 89.47 81.80 74.33 90.10 82.68 75.85

CharacterBERT 90.12 81.79 74.43 90.68 82.39 75.39

Table 7: POS and dependency parsing scores on the FSMB.

settings. In the first one, both models are fine-tuned
on the FSMB training set. In the second one, the
models are trained on the Sequoia training set. The
performance of these models is to be compared – as
in table 7 – to the performance of a parser without
external embeddings from a pre-trained model. As
expected, both models outperform the baseline and
– similarly to previous results – are competitive in
their respective obtained scores.

In the FSMB training setting, CamemBERT
achieves scores of (95.34/87.01/81.56) when
tested on the development part of the data set,
and CharacterBERT achieves close scores of
(95.08/85.99/80.51) on the same data set. Both
scores outperform the ones obtained by the baseline
of (81.24/70.04/59.46) also on the development set.
The same behavior can be observed in the Sequoia
training setting where CamemBERT gets scores of
(89.47/81.80/74.33) and CharacterBERT scores of
(90.12/81.79/74.43) on the development set: both
are still higher than the baseline scores. This com-
parison is still valid when we consider the test set
results. For reasons probably tied to the random
sampling done when splitting the data set, the score
ranking are reversed in the test set, yet results are
very similar and the slight differences between the
two models results are not statistically significant.
This shows the actual effectiveness of having a
character-based model trained on only a small frac-
tion of its “classic” BERT counterpart when facing
noisy user-generated content from a data set that
was proven to be much more noisy that many other
similar data sets (Rosales Núñez et al., 2019).

UPOS UAS LAS %Oscar
FSMB fine-tuned (in-domain)

CamemBERT 95.48 87.47 82.66 100
CamemBERT4gb 95.13 85.73 80.72 2.38
Character-BERT 95.19 86.26 81.26 1

Sequoia fine-tuned (out domain)
CamemBERT 90.10 82.68 75.85 100

CamemBERT4gb 90.69 82.29 75.83 2.38
Character-BERT 90.68 82.39 75.39 1

Table 8: CharacterBert model performance compared
with a small CamemBERT (4gb) model on the FSMB
test set in in-domain and out-of-domain fine-tuning sce-
narios. Full-size Camembert results are reported here
for reference.

8 Discussion

In this work, we evaluate the benefits of using a
character-based model in low-resource scenarios.
Our results show that training such a model from
scratch on much fewer data gives similar perfor-
mance to a multilingual BERT adapted to the lan-
guage using the same amount of data.

Overall, our observations confirm the findings
of El Boukkouri et al. (2020) regarding the robust-
ness to noise and misspellings of the Character-
BERT model. We showed that the model has com-
petitive performance on noisy French UGC data
when trained on only a fraction of the OSCAR
corpus compared to CamemBERT trained on the
full corpus and when trained on corpora containing
about 1M words in the extremely noisy and low-
resource case of NArabizi. This is consistent with
the findings of Martin et al. (2020) and Micheli
et al. (2020), who showed that MLM could already
learn a lot from pre-training on smaller data set.
Extending this investigation by training on a larger

- CharacterBert: very
strong performance in
both scenarios but
surprisingly so does
CamemBERT4G !

- WHY ?

CharacterBERT vs CamemBERT4GB

The unreasonable effectiveness of  
subwords-based language models

- One part of the answer may come from an Omer Levy’s group
recent paper Models In a Spelling Bee: Language
Models Implicitly Learn the Character Composition
of Tokens (Itzhak and Levy, 2021)

- Using a smart Spelling Task probe they show that (i) BPE-based
models are able to model character-level composition and (ii)
more interestingly that pretraining the model on this spelling task
embeddings doesn’t improve the model MLM performance.  
Meaning that this character modeling ability is inherent to the
model itself.

Why are Bert-based models so robust?

In conclusion, pretrained models are here to last
Especially since we showed that « less is beautiful » and training Bert-
based models on corpora as small as 4GB with a relatively small
number of steps is likely to boost NLP for under-resourced languages
and domain-specific tasks.

Do we need Character-based models though? Big question,
I’d say that if the target language/domain contains a lot of lexical
variabilities, is under-resourced and is not included in the pre-training
set, probably yes.
note: These conditions include most of the minority languages, specialized
dialects and « niche » domains

But that’s ongoing research under heavy scrutiny :)

CamemBERTa: adding Electra/DeBERTa to the mix

DeBERTA v3 (He et al, 2021; current sota in Bert-class models)
Disantangled attention: The proposed disentangled attention
mechanism differs from all existing approaches in that each input word is
represented using two separate vectors that encode a word’s content and
position, respectively.  
Key difference: instead of adding them, the two vectors are treated
separately throughout the network.
Remplacement Token Detection objective: RTD corrupts the
input by replacing some input tokens with incorrect––but somewhat
plausible––fakes. The goal is therefore to predict whether the token has
been replaced or not. Instead of only the [mask] tokens, all tokens are seen
here.

Goal: finding a more efficient model

CamemBERTa: Very cool results

CamemBERTA trained on 33% of CamemBERT, better
results.

GSD RHAPSODIE SEQUOIA FSMB NER
MODEL

UPOS LAS UPOS LAS UPOS LAS UPOS LAS F1

CamemBERT30% 98.55 94.26 97.61 83.19 99.32 94.09 94.63 80.13 91.04
CAMEMBERTA 98.55 94.38 97.52 84.23 99.44 94.85 94.80 80.74 90.33

CamemBERTCCNet 98.57 94.35 97.62 84.29 99.35 94.78 94.80 81.34 89.97

Table 1: POS, dependency parsing and NER results on the test sets of our French datasets, averaged over 5 seeds.

Model F1 EM

CamemBERT30% 75.14 56.19
CAMEMBERTA 81.15 62.01

CamemBERTCCNet 80.98 62.51

Table 2: Question Answering results on FQuAD 1.0.
Results were averaged over 5 seeds.

tokens in 27k sentences extracted from news ar-274

ticles. Our results in Table 1, surprisingly show275

that CamemBERT30% outperforms all models by a276

significant margin, while CamemBERTCCNet falls277

behind ours by 0.36 F1 points.278

(iv) FLUE Benchmark We use datasets from279

the French Language Understanding Evaluation280

(FLUE) benchmark (Le et al., 2020), namely the281

French part of the paraphrase identification dataset282

PAWS-X (Yang et al., 2019), and of XNLI (Con-283

neau et al., 2018), in addition to CLS, a binary284

classification dataset with Amazon reviews taken285

from Amazon.286

Our results (Table 3) show that our model per-287

forms the best on all FLUE datasets.288

Model CLS PAWS-X XNLI

CamemBERT30% 93.28 88.94 79.89
CAMEMBERTA 94.92 91.67 82.00

CamemBERTCCNet 94.62 91.36 81.95

Table 3: Text classification results (Accuracy) on the
FLUE benchmark. Results were averaged over 5 seeds.

5 Discussion289

Our experiments clearly show that given the same290

training corpus, tokenizer, and total number of ex-291

amples seen during training, CAMEMBERTA out-292

performs the MLM trained CamemBERT model293

on all tasks except NER on FTB and POS tagging294

on Rhapsodie. Moreover, our model implementa-295

tion is able to match or outperform a fully trained296

CamemBERT model, trained on around 3 times297

more samples and more compute. The strong per- 298

formance of our model on higher level FLUE tasks 299

suggest that lower level tasks such as POS tagging 300

and dependency parsing are less challenging for 301

current generation models, since they mostly re- 302

quire surface level information which the model 303

can capture early in the training process, as sug- 304

gested by Martin et al. (2020), compared to tasks 305

such as question answering and text classification 306

which require more complex processing. 307

Taking a step back and looking at the only De- 308

BERTa model that includes French, mDeBERTa 309

(He et al., 2021a) we can see (cf. Table 5) that 310

our model only requires 6.6% of its multilingual 311

counterpart training samples to achieve competitive 312

performance while additionally also outperforming 313

the XML-R model (Conneau et al., 2020) trained 314

on a much larger training sample size. 315

This confirms the interest of using such training 316

paradigms in compute limited scenarios for seman- 317

tically demanding tasks such as question-answering 318

or natural-language inference. 319

6 Conclusion 320

We presented CAMEMBERTA, a data-efficient 321

French language model trained on a large cor- 322

pus of French text and the first publicly available 323

DeBERTaV3-style pretrained model and imple- 324

mentation. For a fair evaluation we reused the 325

same corpus and tokenizer as CamemBERTCCNet, 326

but using only 30% of the total number of input 327

training tokens. We compared the performance of 328

both models in addition to an MLM model trained 329

from scratch under the same setup as CAMEM- 330

BERTA, CamemBERT30%, on a variety of down- 331

stream tasks. Our experiments showed that our 332

model outperforms CamemBERT30% on all tasks 333

except NER on FTB, and that it is able to match and 334

even surpass CamemBERTCCNet. Furthermore, 335

we have also made our optimized code implemen- 336

tation and pretrained model weights publicly avail- 337

able for others to use. 338

4

Appendix 684

Model UPOS LAS NER CLS PAWS-X XNLI F1FQuAD EMFQuAD

CamemBERTOSCAR 97.50 88.24 88.19 94.61 90.87 81.38 79.92 61.15
CamemBERTCCNet 97.59 88.69 89.97 94.62 91.36 81.95 80.98 62.51

CAMEMBERTA 97.57 88.55 90.33 94.92 91.67 82.00 81.15 62.01
CAMEMBERTAdropout 97.56 88.57 90.03 94.46 91.42 81.91 79.37 60.29

Table 4: Comparison results of CamemBERTOSCAR and CamemBERTCCNet, and our model CAMEMBERTA,
with and without dropout.

XNLI Steps # tokens† Size (in tokens)
mDeBERTa 84.4 500k 2T 2.5T
CAMEMBERTA 82.0 33k⇤ .139T .319T

XLM-R⇤⇤ 81.4 1.5M 6T 2.5T
CamemBERTCCNet 81.95 100k .419T .319T

Table 5: Comparison of XNLI results for different pre-training settings. ⇤step count was converted assuming 8k
batch size. †the total number of tokens seen during training.⇤⇤Conneau et al. (2020)

A Negative Results 685

In addition to our main results, we attempted to improve the performance of our model by adding BPE- 686

Dropout (Provilkov et al., 2020) to the tokenization process, as it was shown that this method of subword 687

regularization improves performance on translation tasks. We retrain our model with BPE-Dropout, 688

dubbed CamemBERTadropout, and compare the results to our original model in Table 4. We observe that 689

by adding BPE-Dropout, we obtain a decrease in performance on most tasks, except for POS tagging and 690

dependency parsing, where the performance does not change. 691

B Pre-training Dataset Choice 692

We elected to use CCNet as our pre-training dataset instead of the more common OSCAR dataset (Ortiz 693

Suárez et al., 2019), as it was shown to produce less offensive output (Launay et al., 2022). Nevertheless, 694

we also ran experiments with CamemBERTOSCAR, and found that it performed slightly worse than 695

CamemBERTCCNet, as shown in Table 4. 696

C Pre-training Compute Comparison 697

Our model is trained for 8 days on 6 A40 GPUs, compared to CamemBERT which was trained on 256 698

V100 GPUs for one day, which is roughly equivalent to 28 days of training on 6 A40 GPUs, since an 699

NVIDIA A40 GPU is about 1.5x faster than a V100 GPU on language modeling tasks according to recent 700

benchmarks. See https://lambdalabs.com/blog/nvidia-rtx-a40-benchmarks. 701

D Hyper-parameters 702

For experiments on the FLUE benchmark we use the same hyper-parameters as the authors of Camem- 703

BERT on the NLI task. As for POS tagging and dependency parsing, we use the same configurations as 704

the one used in Riabi et al. (2021). 705

9

Same architecture as CamemBERT, same training data, same experiment settings

More or equally performant
as 

multilingual models

More performant than other  
monolingual models

CamemBERTa: Very cool results
Things are lest clear on lower level tasks somehow:
 > CamemBERT30%
~CamemBERTccnet

GSD RHAPSODIE SEQUOIA FSMB NER
MODEL

UPOS LAS UPOS LAS UPOS LAS UPOS LAS F1

CamemBERT30% 98.55 94.26 97.61 83.19 99.32 94.09 94.63 80.13 91.04
CAMEMBERTA 98.55 94.38 97.52 84.23 99.44 94.85 94.80 80.74 90.33

CamemBERTCCNet 98.57 94.35 97.62 84.29 99.35 94.78 94.80 81.34 89.97

Table 1: POS, dependency parsing and NER results on the test sets of our French datasets, averaged over 5 seeds.

Model F1 EM

CamemBERT30% 75.14 56.19
CAMEMBERTA 81.15 62.01

CamemBERTCCNet 80.98 62.51

Table 2: Question Answering results on FQuAD 1.0.
Results were averaged over 5 seeds.

tokens in 27k sentences extracted from news ar-274

ticles. Our results in Table 1, surprisingly show275

that CamemBERT30% outperforms all models by a276

significant margin, while CamemBERTCCNet falls277

behind ours by 0.36 F1 points.278

(iv) FLUE Benchmark We use datasets from279

the French Language Understanding Evaluation280

(FLUE) benchmark (Le et al., 2020), namely the281

French part of the paraphrase identification dataset282

PAWS-X (Yang et al., 2019), and of XNLI (Con-283

neau et al., 2018), in addition to CLS, a binary284

classification dataset with Amazon reviews taken285

from Amazon.286

Our results (Table 3) show that our model per-287

forms the best on all FLUE datasets.288

Model CLS PAWS-X XNLI

CamemBERT30% 93.28 88.94 79.89
CAMEMBERTA 94.92 91.67 82.00

CamemBERTCCNet 94.62 91.36 81.95

Table 3: Text classification results (Accuracy) on the
FLUE benchmark. Results were averaged over 5 seeds.

5 Discussion289

Our experiments clearly show that given the same290

training corpus, tokenizer, and total number of ex-291

amples seen during training, CAMEMBERTA out-292

performs the MLM trained CamemBERT model293

on all tasks except NER on FTB and POS tagging294

on Rhapsodie. Moreover, our model implementa-295

tion is able to match or outperform a fully trained296

CamemBERT model, trained on around 3 times297

more samples and more compute. The strong per- 298

formance of our model on higher level FLUE tasks 299

suggest that lower level tasks such as POS tagging 300

and dependency parsing are less challenging for 301

current generation models, since they mostly re- 302

quire surface level information which the model 303

can capture early in the training process, as sug- 304

gested by Martin et al. (2020), compared to tasks 305

such as question answering and text classification 306

which require more complex processing. 307

Taking a step back and looking at the only De- 308

BERTa model that includes French, mDeBERTa 309

(He et al., 2021a) we can see (cf. Table 5) that 310

our model only requires 6.6% of its multilingual 311

counterpart training samples to achieve competitive 312

performance while additionally also outperforming 313

the XML-R model (Conneau et al., 2020) trained 314

on a much larger training sample size. 315

This confirms the interest of using such training 316

paradigms in compute limited scenarios for seman- 317

tically demanding tasks such as question-answering 318

or natural-language inference. 319

6 Conclusion 320

We presented CAMEMBERTA, a data-efficient 321

French language model trained on a large cor- 322

pus of French text and the first publicly available 323

DeBERTaV3-style pretrained model and imple- 324

mentation. For a fair evaluation we reused the 325

same corpus and tokenizer as CamemBERTCCNet, 326

but using only 30% of the total number of input 327

training tokens. We compared the performance of 328

both models in addition to an MLM model trained 329

from scratch under the same setup as CAMEM- 330

BERTA, CamemBERT30%, on a variety of down- 331

stream tasks. Our experiments showed that our 332

model outperforms CamemBERT30% on all tasks 333

except NER on FTB, and that it is able to match and 334

even surpass CamemBERTCCNet. Furthermore, 335

we have also made our optimized code implemen- 336

tation and pretrained model weights publicly avail- 337

able for others to use. 338

4

Appendix

In the appendix, we analyse different design
choices of CamemBERT (Table 8), namely with
respect to the use of whole-word masking, the train-
ing dataset, the model size, and the number of train-
ing steps in complement with the analyses of the
impact of corpus origin an size (Section 6. In all the
ablations, all scores come from at least 4 averaged
runs. For POS tagging and dependency parsing, we
average the scores on the 4 treebanks. We also re-
port all averaged test scores of our different models
in Table 7.

A Impact of Whole-Word Masking

In Table 8, we compare models trained using
the traditional subword masking with whole-word
masking. Whole-Word Masking positively impacts
downstream performances for NLI (although only
by 0.5 points of accuracy). To our surprise, this
Whole-Word Masking scheme does not benefit
much lower level task such as Name Entity Recog-
nition, POS tagging and Dependency Parsing.

B Impact of model size

Table 8 compares models trained with the BASE
and LARGE architectures. These models were
trained with the CCNet corpus (135GB) for prac-
tical reasons. We confirm the positive influence
of larger models on the NLI and NER tasks. The
LARGE architecture leads to respectively 19.7%
error reduction and 23.7%. To our surprise, on POS
tagging and dependency parsing, having three time
more parameters doesn’t lead to a significant differ-
ence compared to the BASE model. Tenney et al.
(2019) and Jawahar et al. (2019) have shown that
low-level syntactic capabilities are learnt in lower
layers of BERT while higher level semantic repre-
sentations are found in upper layers of BERT. POS
tagging and dependency parsing probably do not
benefit from adding more layers as the lower layers
of the BASE architecture already capture what is
necessary to complete these tasks.

C Impact of training dataset

Table 8 compares models trained on CCNet and
on OSCAR. The major difference between the two
datasets is the additional filtering step of CCNet
that favors Wikipedia-Like texts. The model pre-
trained on OSCAR gets slightly better results on
POS tagging and dependency parsing, but gets a

Figure 1: Impact of number of pretraining steps on
downstream performance for CamemBERT.

.

larger +1.31 improvement on NER. The CCNet
model gets better performance on NLI (+0.67).

D Impact of number of steps

Figure 1 displays the evolution of downstream task
performance with respect to the number of steps.
All scores in this section are averages from at least
4 runs with different random seeds. For POS tag-
ging and dependency parsing, we also average the
scores on the 4 treebanks.

We evaluate our model at every epoch (1 epoch
equals 8360 steps). We report the masked language
modelling perplexity along with downstream per-
formances. Figure 1, suggests that the more com-
plex the task the more impactful the number of
steps is. We observe an early plateau for depen-
dency parsing and NER at around 22k steps, while
for NLI, even if the marginal improvement with
regard to pretraining steps becomes smaller, the
performance is still slowly increasing at 100k steps.

In Table 8, we compare two models trained on
CCNet, one for 100k steps and the other for 500k
steps to evaluate the influence of the total number
of steps. The model trained for 500k steps does
not increase the scores much from just training
for 100k steps in POS tagging and parsing. The
increase is slightly higher for XNLI (+0.84).

Those results suggest that low level syntactic
representation are captured early in the language
model training process while it needs more steps
to extract complex semantic information as needed
for NLI.

CamemBERT brought to you by the public service of research  
(with the support of FAIR) https://camembert-model.fr

Thank you :)
• Arij Riabi 

CharacterBert for UGC : http://pauillac.inria.fr/~seddah/
WNUT2021_CharacterBert4UGC_Riabi_Seddah.pdf

• Code and data set: https://gitlab.inria.fr/ariabi/character-
bert-ugc

• Wissam Antoun 
CameBERTa : A French language model based on DeBERTa
V3

• Code: https://gitlab.inria.fr/almanach/CamemBERTa

http://pauillac.inria.fr/~seddah/WNUT2021_CharacterBert4UGC_Riabi_Seddah.pdf
http://pauillac.inria.fr/~seddah/WNUT2021_CharacterBert4UGC_Riabi_Seddah.pdf
http://pauillac.inria.fr/~seddah/WNUT2021_CharacterBert4UGC_Riabi_Seddah.pdf
https://gitlab.inria.fr/ariabi/character-bert-ugc
https://gitlab.inria.fr/ariabi/character-bert-ugc

